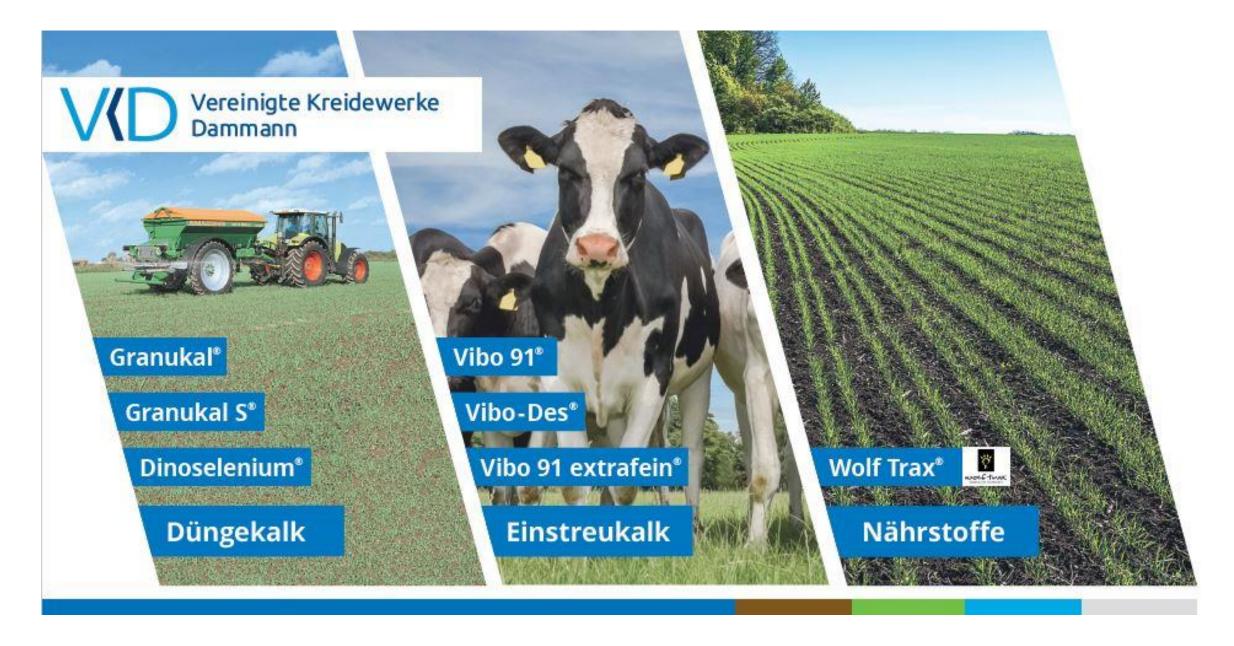
Herzlich Willkommen

Einfluss der Kalkdünger auf die Aggregatstabilität und die Infiltration

Oliver Borowy

oliver.borowy@omya.com

Tel.: 0 170-798 47 26



Kreidewerk in Lägerdorf

Kreidewerk Rügen GmbH in Sassnitz

Agenda

- Grundlagen Kalkung
- Granulierte Kalke vs. Pulver
- Anwendungsbeispiele Kalkdüngung
- Fachliche & wirtschaftliche Vorteile der Kalkdüngung

Agenda

- Grundlagen Kalkung
- Granulierte Kalke vs. Pulver
- Anwendungsbeispiele Kalkdüngung
- Fachliche & wirtschaftliche Vorteile der granulierten Kalkdüngung

Kalkwirkung auf Boden und Pflanze

1. Direkte Wirkung

2. Indirekte Wirkung

\mathbf{h}	m		h
he			

physikalisch

biologisch

Günstiger pH-Bereich

Nährstoffe Ca Mg

Verfügbarkeit der Hauptund Spurennährstoffe verbessert

tieferes Wurzelwachstum

Verbessert Dünger- u. Nährstoff- Ausnutzung Flockung der Tonteilchen -Krümelbildung

Größeres, stabileres Porenvolumen: mehr Luft im Boden, gute Wasserführung

Infiltration, Regenverdaulichkeit Befahrbarkeit Durchlüftung Erwärmung

Förderung des **Bodenlebens**

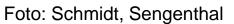
Bioturbation, Ton-Humus-Verbind. Höherwert. Humus

Bessere Nährstoff-Sorption u. Desorption

verringert **Erosion u. Verdichtung**

Foto: Oliver Borowy

Foto: Felgentreu, DSV Bückwitz



Versauerung und Kalziummangel

links: Wachstumsstörungen in Wintergerste, Herbst 2020

NPK-Mangel bei zu niedrigem pH-Wert im Mais

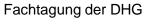
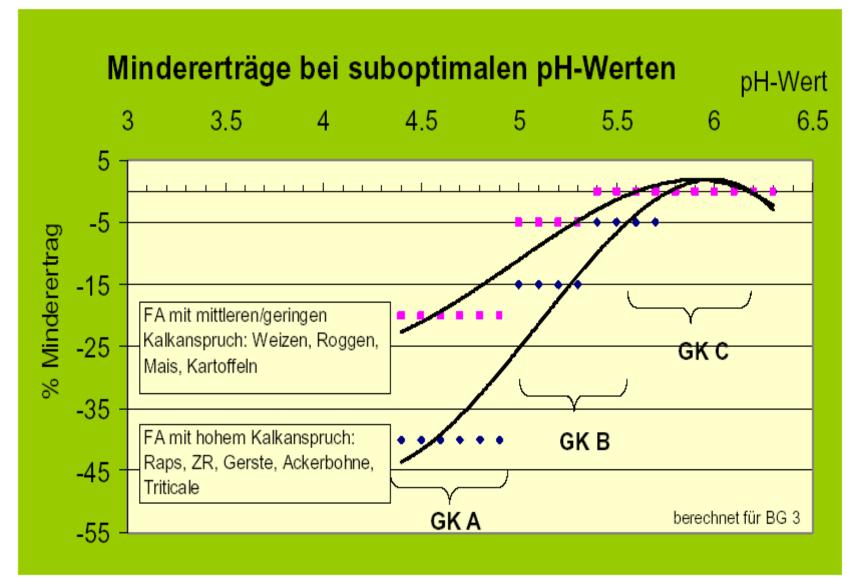

11

Foto: Oliver Borowy Verschlämmung und Erosion – Verspäteter Feldaufgang und schlechtere Jugendentwicklung

Foto: Jakob Opperer, Präs. LfL FS

13

Foto: Jakob Opperer, Präs. LfL FS


pH- Klasse C der einzelnen Bodenarten

(Acker ≤ 4% Humus)

Sand	S	5,4 – 5,8
schw. lehm. Sand	l'S	5,8 – 6,3
stark lehm. Sand	IS	6,1 – 6,7
sandig/schluffiger Lehm	sL/uL	6,3 – 7,0
toniger Lehm bis Ton	tL – T	6,4 – 7,2

Quelle: VDLUFA 2000

Quelle: Kerschberger u.a.

Ursachen für Kalkverluste im Boden

1. natürliche Versauerung durch CO₂ im Boden

150-250 kg CaO/ha/Jahr

2. saure Düngung & saurer Regen z.B.: (SSA,

100-150 kg

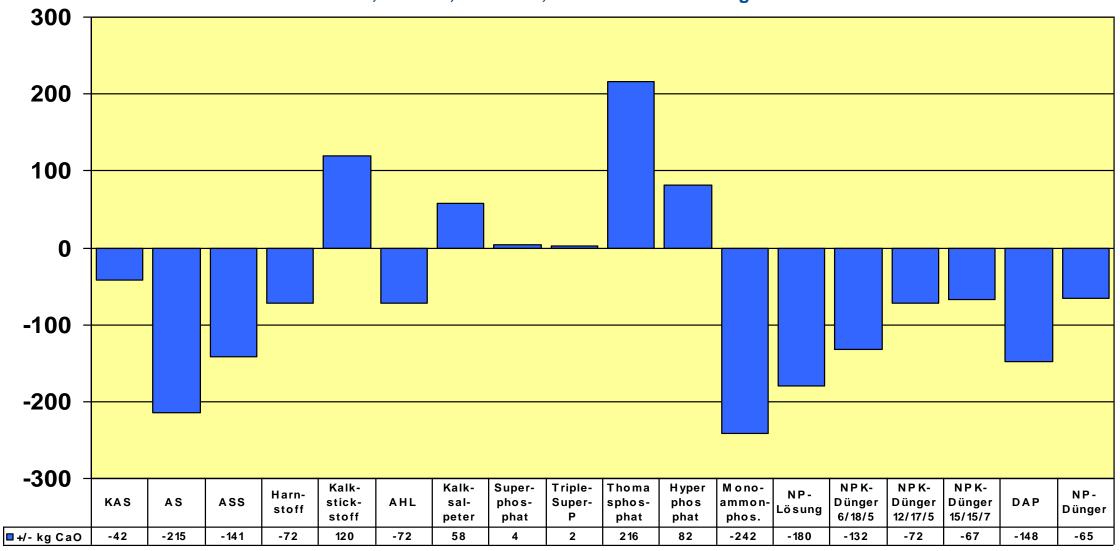
ASS)

CaO/ha/Jahr

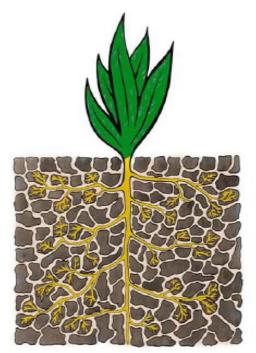
Pflanzenentzug & saure
 Wurzelausscheidungen
 z.B. NH₄

50-100 kg CaO/ha/Jahr

Gesamtverluste inkl. Auswaschung


300- 500 kg CaO/ha/Jahr

Saure Düngung kostet Kalk Kalkverlust bzw. –gewinn durch Düngung


n. KERSCHBERGER, DOMEY, TLL Jena; Quelle: Bauernzeitung Sachsen-Anhalt 6.1.1995

Wasser- und Nährstoffkapazität in Abhängigkeit der Bodenstruktur (Quelle: DLG Merkblatt 349)

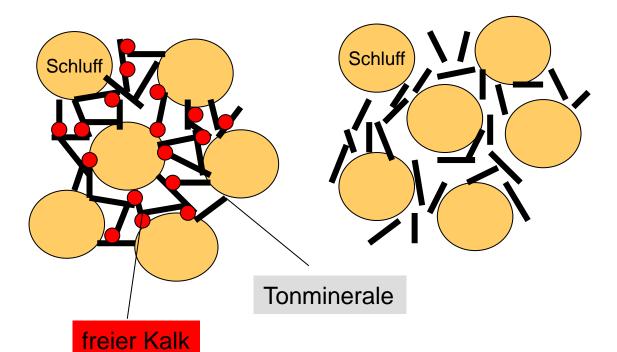
Bei schlechter Struktur ist die Nährstoffaufnahme auf wenige Bereiche beschränkt, so dass ein insgesamt höheres Nährstoffpotenzial vorhanden sein muß.

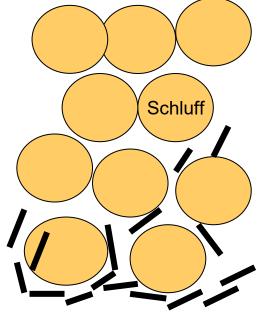
Eine gute Bodenstruktur ermöglicht eine optimale Durchwurzelung und damit eine gute Ausnutzung der gesamten Nährstoffe.

19

Aufbau stabiler Bodenkrümel

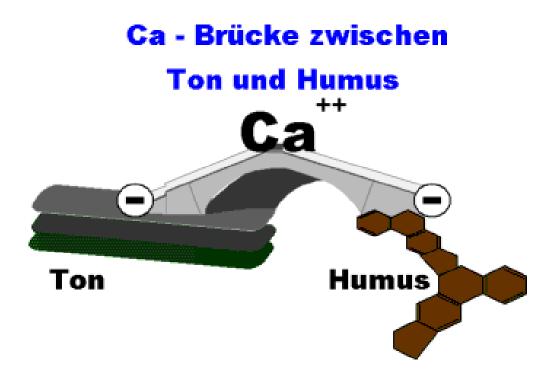
Ton-Humus-Komplex

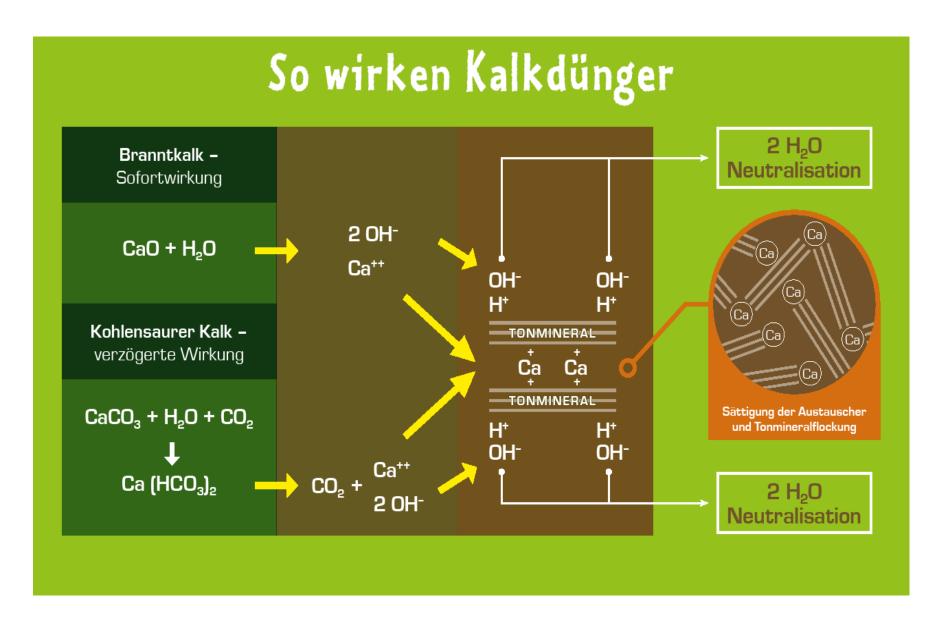


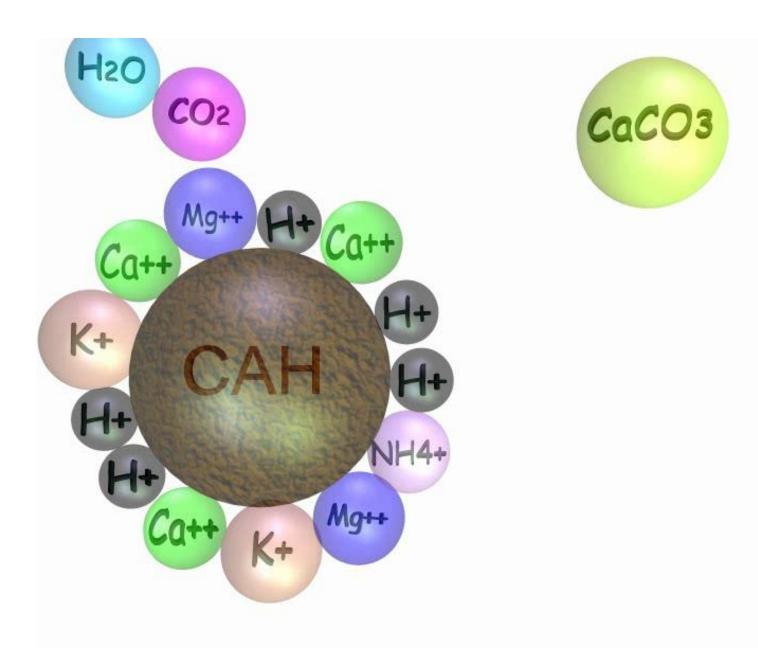

Ton-Schluff-Trennung führt zur Verschlämmung

pH 7 + freier Kalk Kartenhausstruktur der Tonminerale

pH 6,0 - 6,5plattige Struktur der Tonminerale


pH 5,0 - 6,0Schluffkruste Ton ausgewaschen

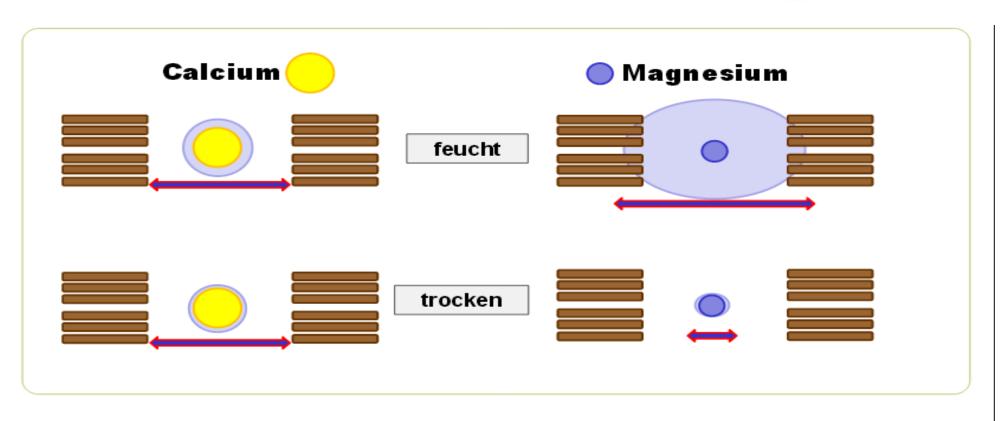




Ton-Humus-Komplex

lonen-Radius

Bodenstruktur durch Ca und Mg



Mg²⁺

Ca²⁺

Warum ist Kalk nicht gleich Kalk?

Ein wichtiges Qualitätsmerkmal bei der Beurteilung eines Düngekalkes ist die Reaktivität!

Reaktivität ist die Wirkungsgeschwindigkeit, in der der Kalk die im Boden befindliche Säure neutralisiert.

Wovon ist die Reaktivität eines Kalkes abhängig?

- o von der Herkunft des Ausgangsgesteins
- o von der Mahlfeinheit
- o von dem Anteil an Magnesiumcarbonat

Kalkarten

kohlensaure Kalke CaCO₃, MgCO₃ als Mono- oder Kombiprodukt, bodensäurelöslich, Alter des Materials und Mahlfeinheit für Reaktivität und Umsetztung im Boden entscheidend (Kreide hochreaktiv, Dolomit träge) ph 7.0 - 9.0

(leichte bis schwere Böden, pH-Ziel und Struktur!)

Branntkalke CaO, MgO, CaOH, MgOH, exotherm (Hitze, Ätzwirkung!, Schneckenstreuer), wasserlöslich, immer sofort verfügbar, ph 12 – 14 (schwere Böden)

Hütten- und Konverterkalk CaSiO₃,MgSiO₃bodensäurelöslich, Mahlfeinheit bestimmt Umsetzung im Boden, ph 7 – 8 (leichte Böden!)

Wie lange dauert es, bis der Kalk in eine lösliche Form umgesetzt ist?

Brannt- und Löschkalk	innerhalb weniger Wochen	
Carbokalk	innerhalb einer Vegetationsperiode	
Kreidekalk	innerhalb von 1 - 2 Jahren	
Mg-Kalke (Dolomitkalk)	innerhalb von 2 - 6 Jahren	
Mg-Mergel (Kalkmergel, je nach Vermahlung)	innerhalb von 4 - 15 Jahren	
Hüttenkalke	innerhalb von 4 - 8 Jahren	

Agenda

- Grundlagen Kalkung
- Granulierte Kalke vs. Pulverkalke
- Anwendungsbeispiele Kalkdüngung
- Fachliche & wirtschaftliche Vorteile der granulierten Kalkdüngung

Beispiele Kalkanwendungen

Stoppelkalkung mit Kohlensaurem erdfeuchten Kalk

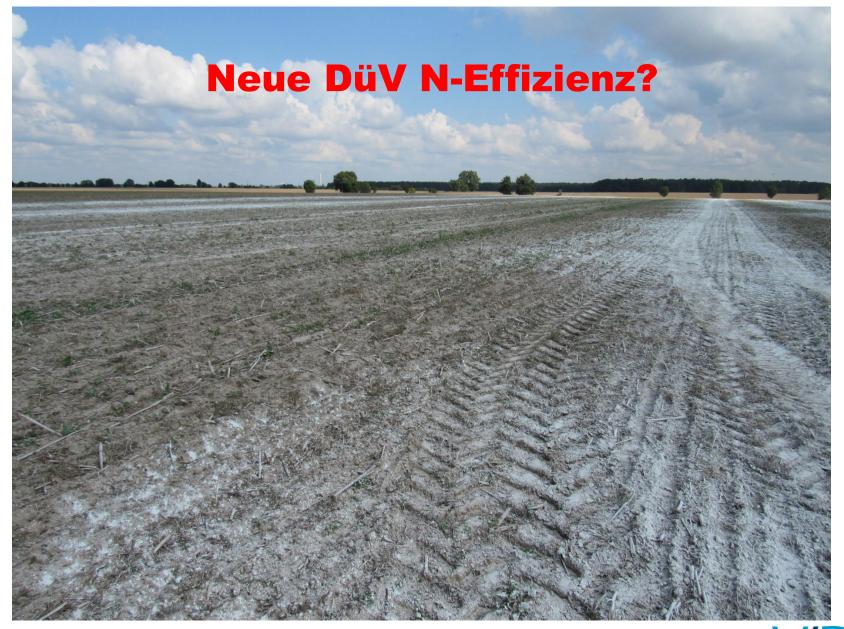
.... und wie sieht's in der Praxis aus?

..... liegt noch Stroh

..... steht noch Getreide

..... Tauschflächen/Pachtflächen

..... zu nass

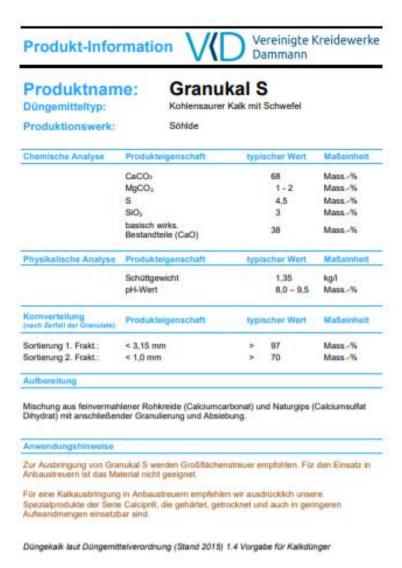

..... falsche Kippstelle

Beispiele Kalkanwendungen

Granulierte Kopf-Kalkung Herbst / Frühjahr (NA) mit Kreidekalk

.... arbeitswirtschaftlich top

- Nutzung eigener Streutechnik
- Einfache Handhabung
- Kreidekalk = hochreaktiver Kalk


Granukal und Granukal S – gekörnter Kalk

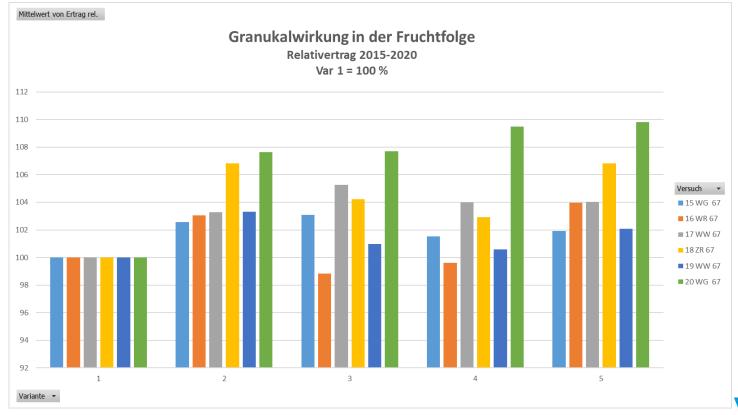
Granukal S 4,5 % Schwefel

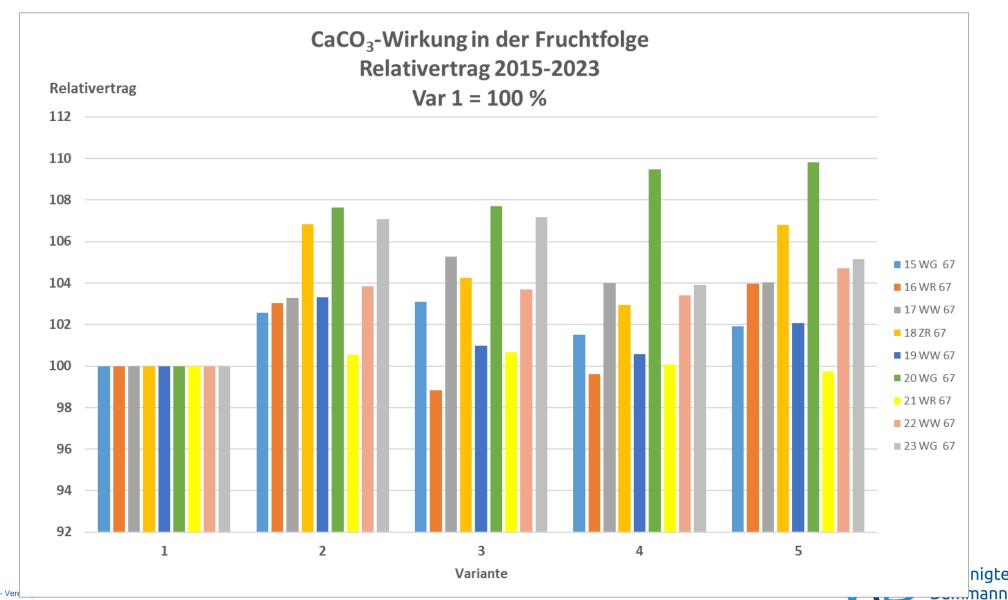
- Verlagern Sie Ihre Kalkdüngung in den NA Herbst/Frühjahr und brechen Sie Arbeitsspitzen
- Granukal & Granukal S[®] ist punktgenau dosierbar und staubarm.
- Minimale Aufwandsmengen garantieren maximalen Erfolg, Sie benötigen, je nach Kultur, nur 500 - 1000 kg/ha/Jahr
- bricht Verschlämmung auf und sorgt für gute Krümelstruktur und Belüftung
- schafft schnell und nachhaltig stabile pH-Werte im Wurzelnahbereich
- Zugelassen für die Anwendung im ökologischen Landbau
- Empfehlung im gezogenen Kalkstreuer/Großflächenstreuer

Vereinigte Kreidewerke

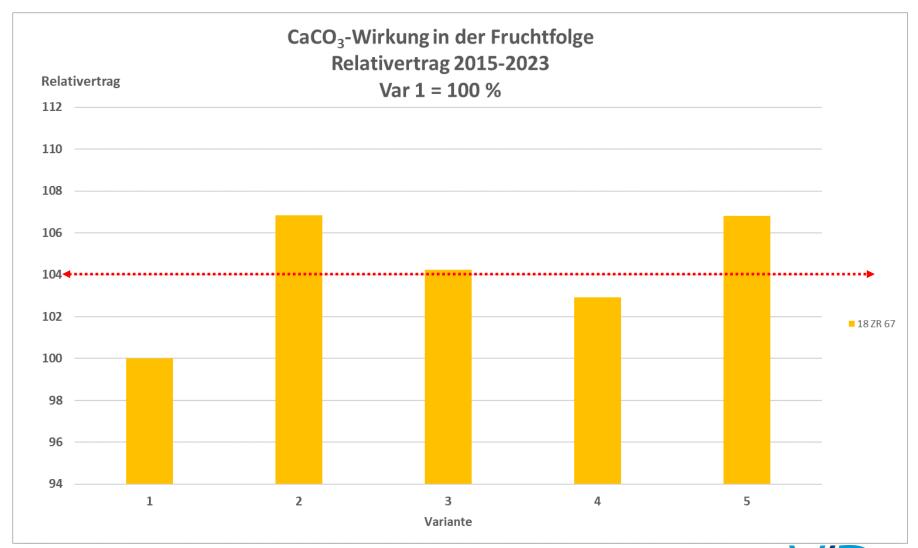
Kopfkalkung mit granuliertem Kalk

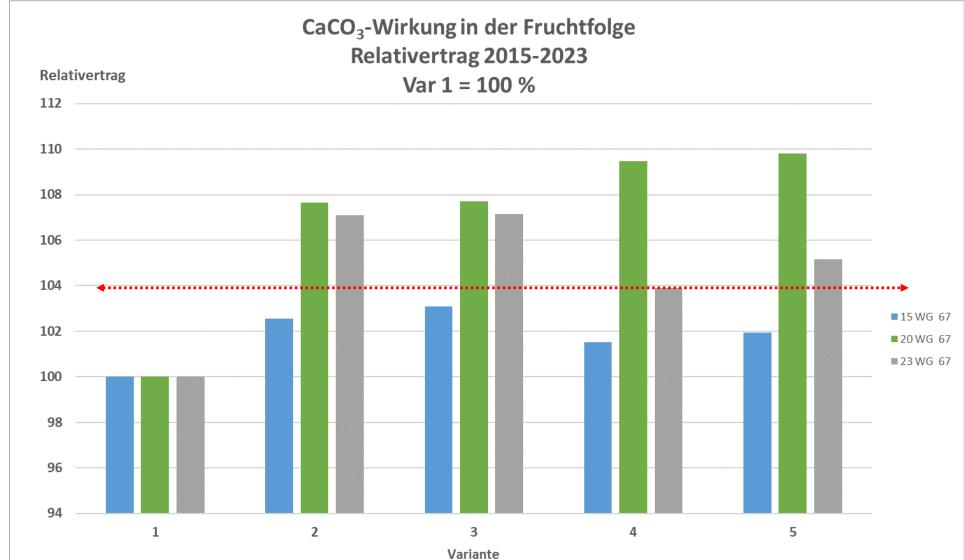
- Rasche Verbesserung des Boden pH-Wertes
- Erhöhte Nährstoffverfügbarkeit
- Präzise Ausbringung mit eigenem Düngerstreuer bis 36 m Streubreite
- Exzellente Calciumquelle
- 91 CaCO₃ 2 MgCO₃
- Präzise Ausbringung mit eigenem Düngerstreuer bis zu 36 m Streubreite

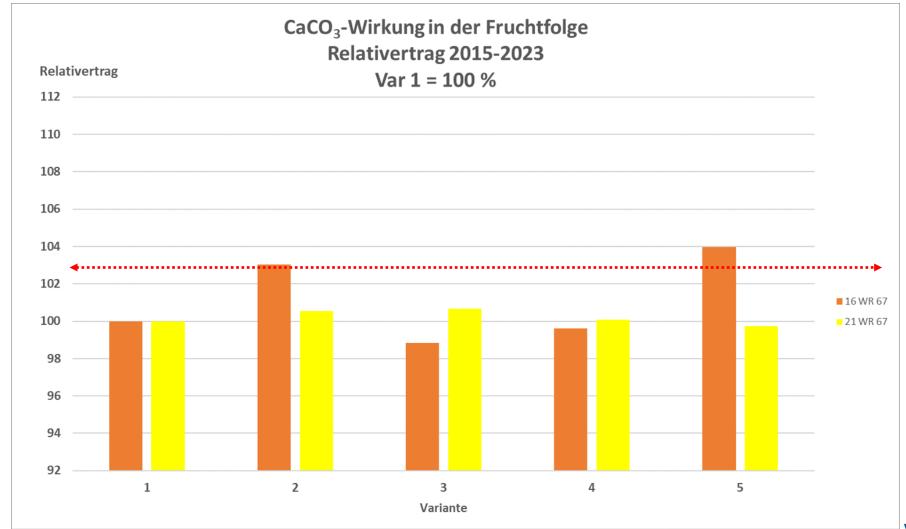

- Erhöhte Nährstoffverfügbarkeit
- Exzellente Quelle von Magnesium und Calcium
- Verbesserte Photosynthese
- Verlangsamte Alterung der Pflanze
- 61 CaCO₃ 32 MgCO₃
- Präzise Ausbringung mit eigenem Düngerstreuer bis zu 36 m Streubreite

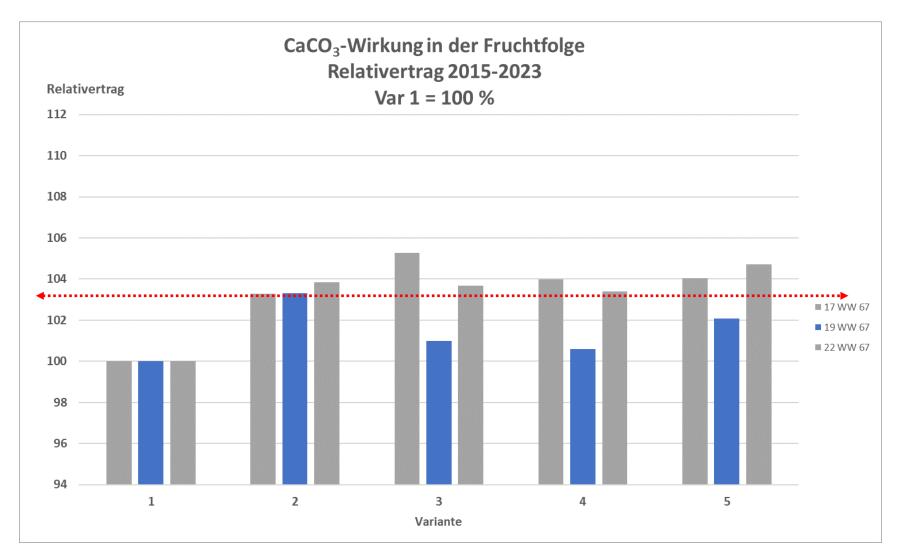

- Schwefel ist ein wesentlicher Bestandteil von Aminosäuren, Coenzymen und Vitaminen
- Exzellente Quelle von Schwefel und Calcium
- Verbesserung der Bodenstruktur ohne Versauerung
- 45 CaO 14 Schwefel
- Präzise Ausbringung mit eigenem Düngerstreuer bis zu 36 m Streubreite

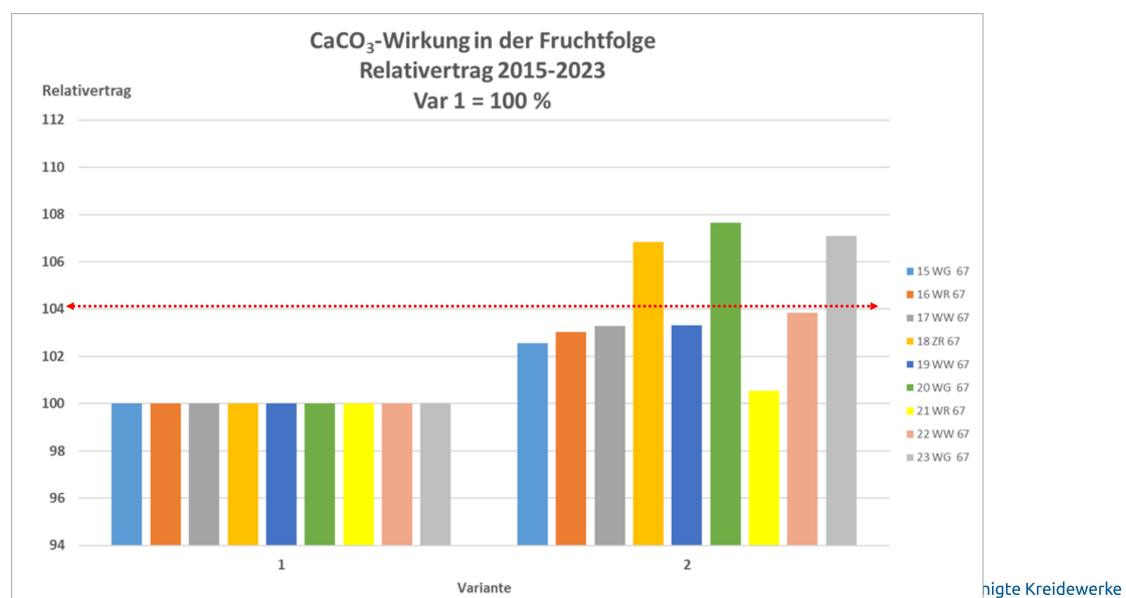
Granukalwirkung in der Fruchtfolge – Versuche mit FH Kiel auf dem Lindenhof


Var	Summe Granukal dt/ha 2015-20	2015 WG	2016 WR	2017 WW	2018 ZR	2019 WW	2020 WG
1	0						
2	90	60 dt/ha vSe			30 dt/ha vSe		
3	120	30 dt/ha vSe + 30 dt/ha F			30 dt/ha vSe + 30 dt/ha F		
4	200	60 dt/ha vSe + 15 dt/ha F	20 dt/ha F	20 dt/ha F	28 dt/ha F	30 dt/ha F	30 dt/ha F
5	190	60 dt/ha vSe	20 dt/ha vSe	20 dt/ha F	30 dt/ha F	30 dt/ha F	30 dt/ha F


Kalkvarianten 2015 - 2023


Erträge Zuckerrüben


Erträge Wintergerste


Erträge Winterraps

Erträge Winterweizen

Erträge vergleichend

____nann

Zusammenfassung Granukal 2015-2023

- Die Ertragsschwankungen ohne Kalkung nehmen von Jahr zu Jahr zu.
- Nach 9 Jahren summiert sich der Mehrnutzen durch eine Kalkung auf rund € 500 je ha.
- Ab 6. Jahr liegen zwischen der schlechtesten Kontrolle und dem Mittel der gekalkten Varianten bereits rund 30 % Ertragsunterschied!
- Gerste und Rüben und Leguminosen reagieren ertraglich besser auf die Kalkung als Weizen und Raps.

Kalkdüngungsversuch zu Luzerne Anlage August 2014 FH Kiel, Rendsburg auf dem Versuchsfeld Ostenfeld

Luzerne ohne Kalk

Kalk zu Luzerne (Kopfkalkung)

Kalk zu Luzerne (eingearbeitet)

Agenda

- Grundlagen Kalkung
- Granulierte Kalke vs. Pulver
- Anwendungsbeispiele Kalkdüngung
- Fachliche & wirtschaftliche Vorteile der granulierten Kalkdüngung

Kalkanwendung (Stoppel / Frühjahr / Kopfkalkung)

	Juni	Juli	August	Sept.	Okt.	Nov.	Dez.	Jan.	Febr.	März	April	Mai
RW	Vor Saat (Mergel*)		Kopfkalkung**			Kopfkalkung**						
ww	Vor Saat (Mergel*)		Kopfkalkung**				Kopfkalkung	**				
WG	Vor Saat (Mergel*)		Kopfkalkung**				Kopfkalkung**					
WR	Vor	Saat (Merg	el*)		Kopfkalkung	**			Kopfkalkung**			
SG									Vor	Saat (Mergel	*)	
Hafer									Vor Saat (Mergel*)			
Legum.								Vor Saat (Mergel*)				
Kartoffel	Kopfkalkung**										K	opfkalkung**
Weinbau									Kopfkalkung	**		
Gemüse									Kopfkalkung	**		
ZR								Vor Saat (Mergel*)				
Mais									Vor	Saat (Mergel	*)	Kopfkalkung**

(*Mergel) = kohlensaurer erfeuchter Kalk It. Aufwandmengen-Empfehlung der Bodenuntersuchung

Kalkanwendung granulierter Kalke 0,2 – 1,0 to/ha & Jahr

Düngekalke von Vereinigte Kreidewerke Dammann

Granukal 80%CaCO₃ + 5% MgCO₃

Granukal S 68% CaCO₃ + 2% MgCO₃ + 4,5% S

RKK 80 80% CaCO₃

Rügener 2PK 70/10 70% CaCO₃ + 10% MgCO₃

Rügener 2PK 70/10 65% CaCO₃ + 15% MgCO₃

SÖKA I 85 % CaCO₃

SÖKA II 80 % CaCO₃ + 5% MgCO₃

SÖKA II 70 % CaCO₃ + 15% MgCO₃

84% $CaCO_3 + 5\% MgCO_3 + Se$ **Dino Selenium**

Einstreukalke

ViBo 91 91% CaCO₃ + 0,5% MgCO₃

 $80 \% CaCo_3 + 20 \% Ca(OH)_2$ ViBo-Des

Düngekalke HW Vereinigte Kreidewerke Dammann GmbH & Co.KG

Das Werk Sassnitz ist zertifiziert nach ISO 9001 + 14001, QS, DLG-Gütezeichen sowie Füller für Beton und Asphalt.

Reaktivität %

Inhaltstoffe

Engl. Dolomitkalk	50% CaCO ₃ + 35% MgCO ₃	35
Estnischer Dolomitkalk	50% CaCO ₃ + 40% MgCO ₃	15
Wünschendorfer Dolomitkalk	53% CaCO ₃ + 37% MgCO ₃	25
Dolostar 15 (Saalekalk I)	65% CaCO ₃ + 15% MgCO ₃	48
Dolotop 35 (Saalekalk II)	48% CaCO ₃ + 35% MgCO ₃	25
Calcistar 85 (Bördekalk)	75 % CaCO ₃ + 3% MgCO ₃	50
Rüdersdorfer Mg-Kalk	41 % CaCO ₃ + 25% MgCO ₃	45
Konverterkalk 43	40 % CaO + 3% MgO + 1,3 P ₂ O ₅	50
Branntkalk gek. 85	89 % CaO + 1 % MgO + 4 % SiO2	

Agenda

- Grundlagen Kalkung
- Granulierte Kalke vs. Pulverkalke
- Anwendungsbeispiele Kalkdüngung
- Fachliche & wirtschaftliche Vorteile der granulierten Kalkdüngung

Warum müssen wir der Kalkung wieder mehr Beachtung schenken?

Vorteile einer Kopfkalkung Herbst / Frühjahr (NA)

Durch Einschränkungen der Stickstoff-/ Phosphatdüngung durch die DvO, müssen nahezu 100 % der gedüngten Nährstoffe, ob aus mineralischer oder organischer Düngung, in den Pflanzen ankommen.

Kultur	Ertragsniveau in dt/ha	N-Bedarfs- wert in kg/ha	Zu-/Abschlag
Winterraps	40	200	10/15
Winterweizen A,B	80	-unkt	10/15
Winterweizen C	- mi	it Furns	0/15
Winterweizen	ollwert mi	nzen	0/15
Winterge N-S	Olly ordi	elizo	(10 dt) 10/15
Sommerg	Opera	140	(10 dt) 10/15
Körnermais VON		200	(10 dt) 10/15
Silomais	450	200	(50 dt) 10/15
Zuckerrübe	650	170	(100 dt) 10/15
Kartoffel	400	180	(50 dt) 10/10

... denn – "Reparatur-Stickstoff" ist verboten DüV nahezu 100 % der gedüngten Nährstoffe müssen in den Pflanzen ankommen

Vorteile einer Kopfkalkung Herbst / Frühjahr (NA)

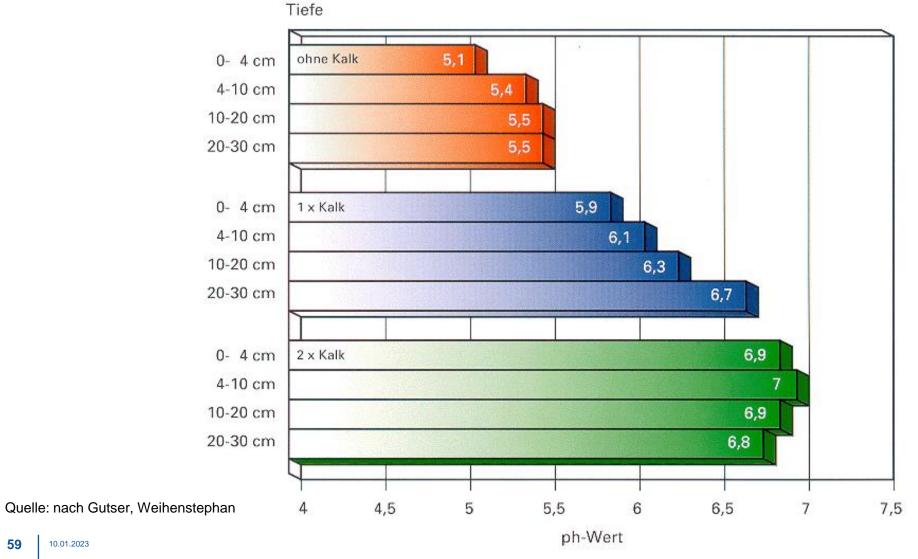
Durch Einschränkungen der Stickstoff-/ Phosphatdüngung durch die DvO, müssen nahezu 100 % der gedüngten Nährstoffe, ob aus mineralischer oder organischer Düngung, in den Pflanzen ankommen.

Kultur	Ertragsniveau in dt/ha	N-Bedarfs- wert in kg/ha	Zu-/Abschlag
Winterraps	40	200	(5 dt) 10/15
Winterweizen A,B	80	230) 10/15
Winterweizen C	80	Funkt	10/15
Winterweizen E	+ mi	it Furr	0/15
Wintergers	IIMell III	nzen	, 10/15
Sommer N-5	ollwert mi	5112	(10 dt) 10/15
Körnerma	Opera	200	(10 dt) 10/15
Silomais VON	450	200	(50 dt) 10/15
Zuckerrübe	650	170	(100 dt) 10/15
Kartoffel	400	180	(50 dt) 10/10

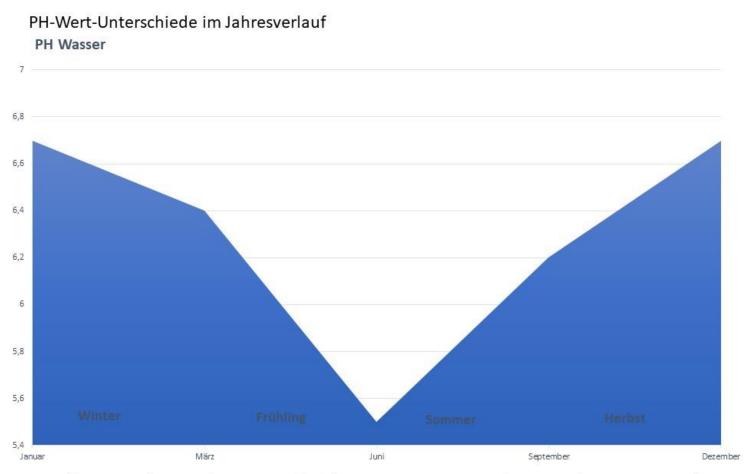
Strategie:

Kopfdüngung mit Kreidekalk im späten Herbst, Winter bzw. zeitigen Frühjahr / VB um in der nachfolgenden Düngung die Nährstoffverfügbarkeiten (NPK) zu erhöhen bzw. optimieren.

(Pflanze & Boden ins "Maul" düngen)



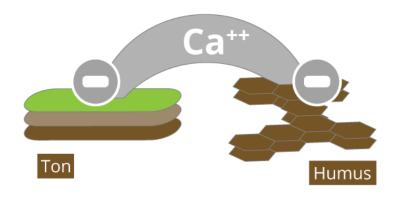
Vorteile einer granulierten Kopfkalkung Herbst / Frühjahr (NA)


- Nährstoffe der anschließenden Düngergaben finden ein optimales pH-Wert Millieu vor
 - Regulierung des pH-Wert im A-Horizont
- Kalk verbessert nicht nur die Effizienz der übrigen
 Nährstoffe, er bildet auch stabile Ton-Humus-Komplexe.
- Die entsprechenden Böden neigen weniger zum Verschlämmen, trocknen schneller ab und erwärmen sich rascher.

Die Versauerung beginnt an der Oberfläche pH-Wert – Stufung in der Krume nach Vegetationsende

Kopfkalkung bietet Vorteile im Jahresverlauf des PH-Wertes im Boden

Quelle: Versuch OMYA/MEAC-Frankreich 1995-1995 an 3 Standorten Bodengruppe 3 sL/IS


Vorteile einer granulierten Kopfkalkung Herbst / Frühjahr (NA)

- Nährstoffe der anschließenden Düngergaben finden ein optimales pH-Wert Millieu vor
 - Regulierung des pH-Wert im A-Horizont
- Kalk verbessert nicht nur die Effizienz der übrigen Nährstoffe, er bildet auch stabile Ton-Humus-Komplexe.
- Die entsprechenden Böden neigen weniger zum Verschlämmen, trocknen schneller ab und erwärmen sich rascher.

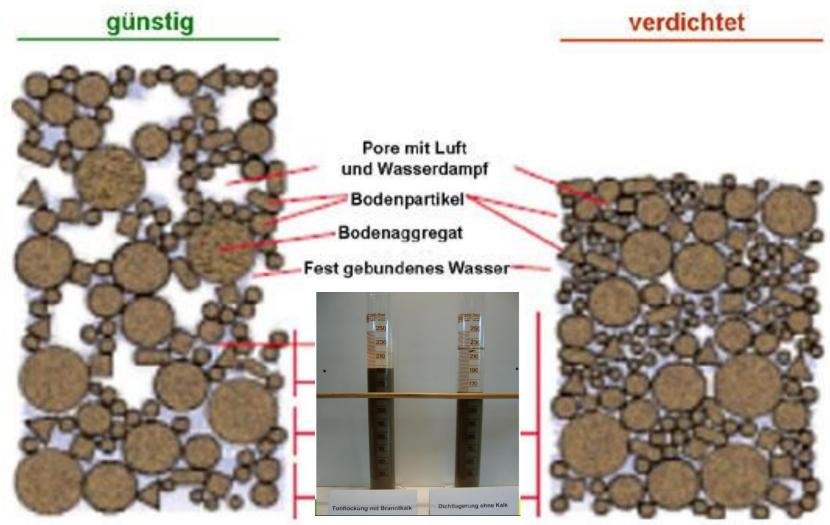
Stabilisierende Wirkung von Calcium

Ca-Brücken verbinden

Ton-Humus-Komplex

Ein intaktes Bodengefüge ist aus landwirtschaftlicher Sicht sehr wichtig für:

Verbesserte <u>Wasseraufnahmefähigkeit</u> des Bodens und damit schnellen Abtransport von <u>überschüssigem Wasser und verbesserte</u> Befahrbarkeit.



Vorteile einer granulierten Kopfkalkung Herbst / Frühjahr (NA)

- Nährstoffe der anschließenden Düngergaben finden ein optimales pH-Wert Millieu vor
 - Regulierung des pH-Wert im A-Horizont
- Kalk verbessert nicht nur die Effizienz der übrigen Nährstoffe, er bildet auch stabile Ton-Humus-Komplexe.
- Böden mit optimal eingestelltem pH-Wert neigen weniger zum Verschlämmen, trocknen schneller ab und erwärmen sich rascher.

Bedeutung physikalischer Bodeneigenschaften

Vereinigte Kreidewerke

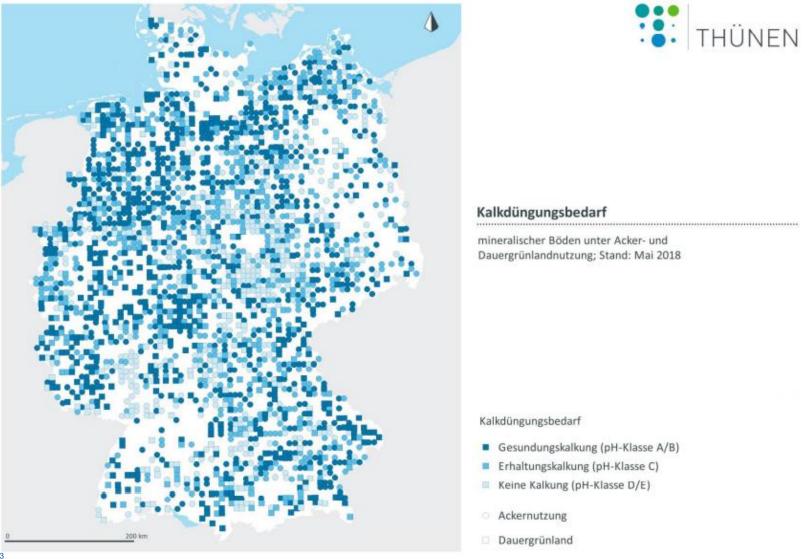
Kalk schafft Bodenstruktur

• locker / krümlig & nährstoffreich wie ein frisches Brot sollte Boden sein"

Kalkversuch Weihenstephan 1978 - 1993

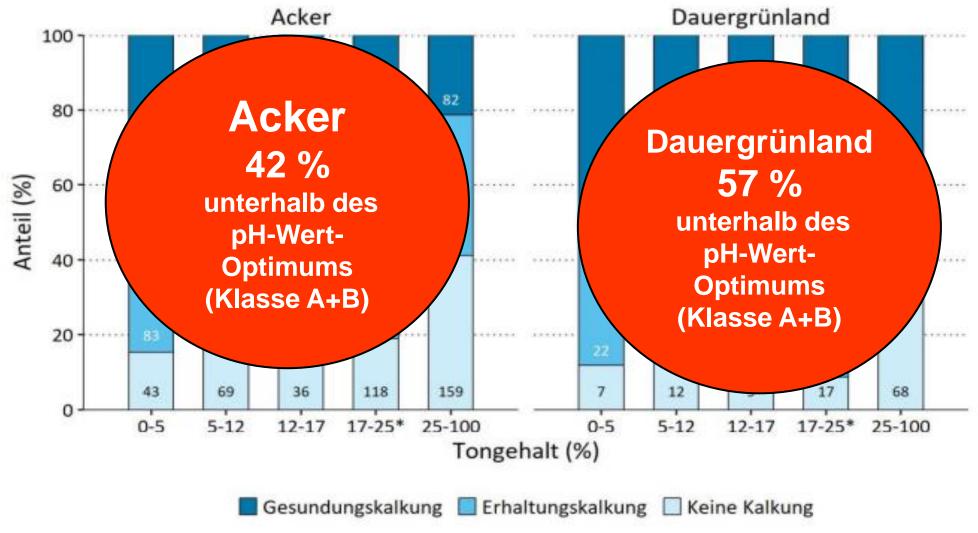
Veränderung von physikalischen Bodeneigenschaften

Parameter	ohne Kalk	mit Kalk	Zu-/Abnahme %
Lagerungsdichte	1,52	1,43	6
Porenvolumen	42	45	7
weite Grobporen enge Grobporen	2 4	4 7	100 75
Feinporen	(20)	(18)	(10)
Wasserfiltration rel.	100	196	96

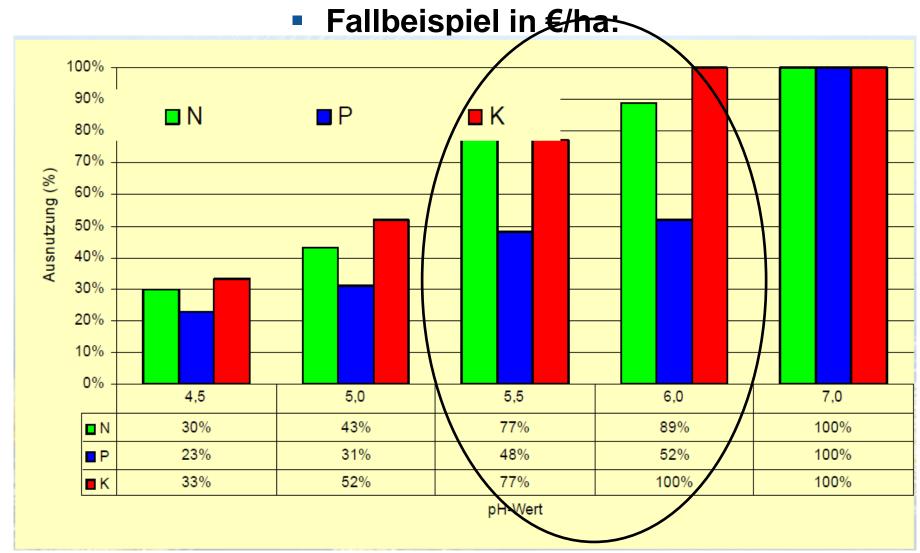

Bodenbearbeitung

Mittelporen sind Basis der nFK

Regenverdaulichkeit



Thünen-Institut Braunschweig


Landwirtschaftlich genutzte Böden in Deutschland Ergebnisse der Bodenzustandserhebung (Stand: 2018)

67

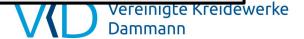
Kalk verbessert die Nährstoffausnutzung

10.01.2024

Nährstoffausnutzung durch Kalk = Bsp. in €/ha (aktuell)

N-Menge 180 kg N/ha

Der optimale pH-Wert garantiert erst die optimale Ausnutzung des gesamten Nährstoffkomplexes Liegt der pH-Wert nur 0,5 Punkte darunter (z.B. anstatt 6 nur 5,5) verschenken Sie von den verabreichten Nährstoffen


Stickstoff (N)	=			
Phosphor (P ₂ O ₅)	=			
Kali (K ₂ O)	=			
Das bedeutet in Euro/ha(
Stickstoff	=			
Phosphor	=			
Kali	=			

12 %

Die "Nichtausnutzung" der gedüngten Nährstoffe tun doppelt weh!!!

- Ertragsverlust 160,00,- + Nährstoffverlust 32,- **~ 192,- €/ha**
- Bilanzverschlechterung!

21,6 kg N/ha

Fazit – Kalk ist nicht gleich Kalk

- Achten Sie beim Kalkeinkauf:
 - Kalkart; Reaktivität; Korngrößen-Zusammensetzung; Inhaltstoffe
- Kalk mehr als nur CaO und pH-Wert
 - Nährstoffausnutzung- / verfügbarkeit
 - Bodenstruktur- bearbeitung; Regenverdaulichkeit; nFK;
 - Wirkung von Stickstoff, Phosphor, Kali in Bezug auf den pH-Wert
 - DvO N-Bedarfsrechnung; Nährstoffbilanzierung

"Kalk ist nicht Alles – aber ohne Kalk ist alles Nichts!"

Herzlichen Dank für Ihre Aufmerksamkeit

